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Abstract—Military working dogs (MWDs) are at high risk of 
heat strain both during training and missions. Body heat in 
MWD increases due to work, and the primary means for 
reducing this heat are resting and panting. Body-worn sensors 
can enable monitoring of work level and respiratory rate in real 
time. They can thereby provide real-time objective indicators of 
thermal strain in MWDs. In this paper a system is proposed for 
using collar-worn accelerometer, global positioning system 
(GPS), and audio recorder sensors to provide real-time estimates 
of work level and respiration (breathing and panting) rate. 
Automated methods are demonstrated for using a collar-worn 
accelerometer and GPS sensor to estimate work levels during 
multiple short-duration activities, and for estimating respiration 
rates from a collar-worn audio recorder. The potential utility of 
these estimates for forecasting and monitoring thermal strain is 
assessed based on performance in out of sample prediction of 
core temperature (Tc) statistics, which are obtained from 
ingestible sensors. Using cross-validation, regression models are 
trained from accelerometer- and GPS-based activity estimates to 
predict rate of change in Tc, obtaining a correlation of r=0.59 
between actual and predicted Tc change rates. Regression models 
are also trained from audio-based respiration rate estimates 
during recovery to predict the Tc values immediately prior to 
recovery, obtaining a correlation of r=0.49 between actual and 
predicted Tc.  

I. INTRODUCTION 
Military Working Dogs (MWDs), working in a team with a 
handler, are susceptible to heat illness and injury when 
working in hot conditions in garrison, training, and theater 
environments [1-5].  Heat stroke was the third most common 
cause of death in MWDs during conflicts in Iraq and 

Afghanistan, and was the most common cause of death from 
non-battle injury [4]. Outside of combat, heat injury is the 
second most common reason (behind behavioral causes) for 
discharge from duty of younger (<5 years) MWDs [5].  

To develop tools for mitigating risk associated with excessive 
thermal strain, an understanding of baseline data regarding the 
excursions in MWD body temperature during normal 
activities is needed. Providing MWD handlers the ability to 
monitor MWD thermal status in real-time could minimize the 
risk of heat injury during exposure to thermal extremes while 
working, training, and resting. 

Dangerously high core temperature (Tc) typically arise in 
MWDs during work. This work can be estimated using body 
movement measures obtained from collar-worn accelerometer 
and GPS sensors. Heat loss and recovery from high Tc values 
are typically accomplished in MWDs by resting and panting 
[6-8]. Resting is easily estimated from the movement sensors, 
and respiratory rates including panting (4-6 Hz) are estimated 
using a collar-worn audio recorder.  

In this paper we demonstrate methods for automated 
estimation of activity levels from collar worn movement 
sensors and of respiration rates from a collar worn audio 
recorder. The methods are applied to a field data set collected 
over two days from six MWDs conducting several military-
relevant activities. The Tc of MWDs was measured using 
ingestible telemetric temperature sensors. Movement and 
respiration estimates are assessed using statistical models to 
predict Tc and ∆Tc during activity. 

The field data collection is described in Section II. Feature 
extraction and statistical modeling algorithms are presented in 
Section III. Results are presented in Section IV, showing the 
ability to predict Tc and ∆Tc values on out of sample test data. 
Finally, a summary of the work and future directions are given 
in Section V. 
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II. DATA COLLECTION 
The 341st Training Squadron at Lackland Air Force Base 
(AFB), San Antonio, TX, procures and trains MWDs for 
patrol and detection activities, spending approximately 60 
days in each phase of the training [9].  Once certified, MWD 
teams support military operations and their capabilities are 
used to enhance the effectiveness of the unit.  The MWD 
training includes the following skills. 

• Obedience:  Sit, Down, Heel, Stay. 
• Obstacle Course:  Negotiate obstacles under control. 
• Controlled Aggression:  Pursue, bite and hold, Out, 

Heel, Stay. 
• Building Search:  Detect a person, narcotics or 

explosives hidden inside a building. 
• Vehicle Search:  Detect narcotics or explosives 

hidden on a vehicle. 
• Scouting:  Locate a person by scent, sight or sound. 
• Gunfire:  Remain calm and attentive while weapons 

are fired. 
 
A total of forty-eight MWDs participated in this study, which 
was approved by the Department of Defense MWD Veterinary 
Service (DODMWDVS) Institutional Animal Care and Use 
Committee (IACUC).  Twenty-four MWDs in training for the 
above skills were tested, six MWDs at a time, over two 
consecutive days on each of four occasions (August and 
October 2014, March and August 2015).  Another twenty-four 
MWDs that were not in training at the time were tested in July 
2015 during a single exercise walk around the kennel grounds.  
 
This paper is a preliminary analysis of the data measured from 
six MWDs that were tested on October 22 and 23, 2014. 
These MWDs were tested on three skills per day, with each 
test separated by long rest periods. The Oct. 22 tests were 
Obedience, Building Search, and Aggression, and the Oct. 23 
tests were Obstacle Course, Scouting, and Gunfire. The test 
durations ranged from 3.5 min. to 19.8 min., with an average 
duration of 9.4 min. The average meteorological conditions 
during the testing (WeatherHawk 500, Logan, UT) are shown 
in Table 1. 
 
Table 1. Average meteorological conditions. 
 

Time 0800 1100 1300 
Temperature oC 20 25 27 
Relative Humidity % 65 49 73 
Solar Radiation W/m2 45 400 567 
Wind Speed m/s 0.4 1.8 1.3 

 
MWD instrumentation consisted of the following. An ingested 
telemetric temperature pill (VitalSense, Phillips Respironics, 
Murrrysville, PA) was used to obtain core body temperatures, 
transmitted to a body-worn data logger (Equivital™, Hidalgo 
Ltd., Cambridge, UK). This data logger provided Tc 
measurements only during the test intervals, while it was 
being worn. In this paper, only these Tc measurements are 

used. Additional Tc measurements, obtained from an off-body 
data logger (VitalSense®, Mini Mitter, Bend OR) during pre-
test and post-test intervals, will be used in future data 
analyses. 
 
A three-axis accelerometer (Actigraph, Pensacola, FL), and a 
GPS device (Garmin Foretrex, Garmin, Ltd., Olathe, KS) were 
worn on the collar during the tests. Finally, a Zoom H1 (Zoom 
North America, Ronkonkoma, NY) audio recorder was 
located on the collar close to the dog’s mouth in order to 
detect breathing and panting. Additionally, off-body voice 
recorder data is also available both prior to and following each 
test, allowing the monitoring of respiration during those 
periods. Fig. 1 illustrates how the accelerometer and audio 
recorder devices were attached to a dog collar, as well 
showing typical data obtained from these devices. 
 

 
Fig.1. Collar-worn accelerometer and audio recorder sensors used to estimate 
activity level and respiratory rate. 

III. METHODS 

A. Feature Extraction 
There are two primary goals of our study: 1) we seek to 
demonstrate that a collar-worn accelerometer and GPS sensor 
can be used to estimate the activity levels in MWDs, and that 
these estimates have real world utility in terms of predicting 
Tc increases; 2) we seek to demonstrate that a collar-worn 
audio recorder can be used to estimate respiratory rates during 
recovery, and that these estimates have real world utility in 
terms of reflecting the level of heat strain (i.e., Tc) achieved 
by the MWD during work. 

 
1) Activity level from accelerometer and GPS 
 

To estimate work from an accelerometer and GPS, measures 
are obtained from short (5 s) data frames. These measures are 
integrated over time to obtain cumulative work estimates, 
which can be used to predict cumulative increase in core 
temperature over an entire test.  
 



Accelerometer-based activity measures are obtained at each 
time step (100 Hz) from the magnitude of the three-
dimensional acceleration vector, ai, which is independent of 
sensor orientation. Next, the variance of ai is computed over 
the jth frame,   

 
            .          (1) 
 

Finally, the 5 s frame-level bj measures are summed across all 
frames in the kth test, thereby obtaining an integrated 
accelerometry-based activity measure,  

 
      .          (2) 
 

Fig. 2 plots cumulative ck values obtained during each of the 
six skill tests from Dog 1. Observe that there are considerable 
difference in activity durations and cumulative activity 
profiles. 

 
Fig.2. Integrated activity levels estimated from accelerometer during the six 
skill tests of Dog 1. 
 
GPS-based activity measures are obtained using a similar 
procedure. The GPS speeds, xi, are computed at one second 
intervals, and then the variance of the GPS speed measures are 
computed within the jth frame,   

 
       .         (3) 

 
Finally, the 5 s frame-level yj measures are summed from all 
frames within the time interval of the kth test, thereby 
obtaining an integrated GPS-based activity measure,  

 
    .        (4) 
 

Fig. 3 plots cumulative zk values obtained during each of six 
tests from Dog 1. Observe that there are rough similarities 
between these GPS-based activity estimates and the 
accelerometer-based estimates in Fig. 2. Fig. 4 plots measured 
Tc values during the same six tests for which activity level 
estimates are plotted in Figs 2 and 3.  
 

 
Fig.3. Integrated activity levels estimated from GPS during six tests of Dog 1. 

 
Fig.4. Core temperature (Tc) profiles measured during six tests of Dog 1. 
 
2) Respiratory rate (RR) from audio 
 

Respiratory rate (RR) estimates are computed from the audio 
signal based on periodicities in the respiratory frequency 
range. The estimation algorithm, developed independently of 
the regression experiments described in Section IIIB, obtains 
RR estimates in a three stage process: 1) extracting the energy 
envelope from the audio signal, 2) generating breathing period 
hypotheses from the energy envelope for each 3 s frame (with 
1 s overlap between successive frames), and 3) selecting valid 
RRs based on the likelihoods of RR hypotheses. 

 
Extracting energy envelope: A pre-emphasis filter that 
amplifies lower frequency components is applied, followed by 
band-pass filtering from 500-1400 Hz.  Next, the signal is 
downsampled by a factor of 10, and finally the log-magnitude 
of the Hilbert envelope of the waveform is computed [10]. 

 
Generating respiratory period hypotheses: From the log 
Hilbert energy envelope, multiple hypotheses are generated 
within local time frames.  Three-second time frames are used, 
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with one-second overlap between successive frames.  Within 
each frame, candidate respiratory period peaks are obtained 
from an autocorrelation function of the energy envelope, 
constrained to an allowable range of 0.1-1.0 seconds 
(spanning possible respiratory rates of 1-10 Hz).  Respiratory 
period hypotheses are obtained from local peaks in the 
autocorrelation function.  In order to make these peak 
hypotheses more robust, the following steps are first 
performed. 

• Biasing in favor of short respiratory periods: the 
autocorrelation function of the log Hilbert envelope 
is modulated by a linear function that ramps from a 
value of one at zero seconds delay down to a value of 
zero at one seconds delay. This is done to favor 
selection of the shortest respiratory period supported 
by the data.  

• Smoothing across time: smoothing within each 
autocorrelation delay bin across nearby frames 
(Gaussian kernel, σ = 4 s). 

• Smoothing across delays: smoothing over 
autocorrelation delay bins within each frame 
(Gaussian kernel, σ = 0.01 s). 

 
Selecting a single valid respiratory rate per frame: For 
each frame (with one frame per second), a single breathing 
period is selected based on the local context.  This is done by 
using a Gaussian mixture model (GMM) [11] to assign 
likelihoods to each respiratory period hypothesis, based on the 
context of other hypotheses nearby in time. Specifically, it 
uses a one-dimensional feature vector containing the 
respiratory period values over a local ±30 s neighborhood. For 
each target frame, a three-component GMM forms clusters 
around the breathing period hypotheses that garner the most 
contextual support. The likelihood assigned to each respiratory 
period hypothesis is based on its GMM likelihood multiplied 
by the magnitude of its log Hilbert envelope autocorrelation 
peak.  

This procedure is repeated for three iterations.  In the first 
iteration, there are three candidate respiratory periods per 
frame.  In iterations 2 and 3, there is only one candidate per 
frame.  This causes the GMM to converge onto a single 
hypothesis that is consistent with evidential support in the 
local temporal neighborhood.  The final likelihood score 
obtained for the winning hypothesis in each frame is used to 
determine the validity of the hypothesis: it is valid only if the 
likelihood exceeds a threshold of 0.0001.  The respiratory rate 
(RR), in units of Hz, is computed as the reciprocal of the 
selected respiratory period in each frame. 
 
Fig. 5 plots RR estimates corresponding to the Controlled 
Aggression test for Dog 1. The black lines delineate the test 
interval, with the pre-test interval to the left and the post-test 
interval to the right. The valid RR estimates are plotted in red 
and the invalid estimates in blue. Observe that the RR rate 
quickly climbs during the post-test interval into the 4-6 Hz 
panting range, with panting persisting throughout the 

measured recovery interval. This behavior may be attributable 
to the relatively high Tc (39.7 deg.) measured at the end of the 
Aggression test (see the rightmost points in Fig. 4). 

 
Fig.5. Respiratory rate (RR) estimates obtained from pre-test, test, and post-
test intervals. Estimates labels as valid estimates are plotted in red. 
 
Fig. 6 illustrates the RR estimates obtained for the Obedience 
test, which culminates in a Tc (39.2 deg.) that is half a degree 
lower than the Tc at the end of the Aggression test (see Fig. 
4). Observe that the Obedience recovery period contains RR 
values that alternate between panting and regular breathing. 
Together, Figs 5 and 6 suggest that a higher Tc at the end of a 
test results in more panting during recovery.  

 
Fig.6. Respiratory rate (RR) estimates obtained from pre-test, test, and post-
test intervals. Valid estimates are plotted in red. 

B. Statistical Modeling and Prediction 
In order to assess the real world utility of our features,   
statistical models are constructed that 1) map the activity level 
features to Tc change rates (∆Tc/min), and 2) map the 
recovery-interval RR features to the Tc values immediately 
prior to recovery. Using cross-validation, the utility of the 
activity and RR-based features for predicting Tc statistics is 
assessed using Gaussian staircase regression (G-SR) statistical 
models. G-SR has previously been applied to predicting 
severity of major depressive disorder from speech and video 
[12-13], severity of Parkinson’s disorder from speech [14], 
and carried load levels from accelerometry [15].  

 



G-SR accomplishes multivariate regression via two steps: 1) 
multivariate fusion, and 2) univariate regression. Multivariate 
fusion is done by constructing several partitions of the 
outcome variable, with each partition being used to train a 
different Gaussian classifier. The set of Gaussians belonging 
to the lower partitions are combined into a single ensemble of 
Gaussians representing Class 1, and the set of Gaussians 
belonging to the higher partitions are combined into an 
ensemble representing Class 2. The log-likelihood ratios 
(LLRs) of the two classes obtained from these Gaussian 
ensembles on the training set are then used to construct a 
least-squares univariate regression model mapping the LLRs 
into the outcome variable. This model is used to generate a 
prediction of the outcome variable based on the LLR from test 
data.  
 

1) Predicting ∆Tc from activity features 
 
There are 36 test trials (six different MWDs with six tests per 
MWD). Since the tests vary in duration, it is appropriate to 
predict the average rate of change in Tc in each test, based on 
the extracted activity features. For each test trial, a statistical 
model mapping the average activity level into the average rate 
of change in Tc, ∆Tc/min, is constructed from the training 
data. Over all 36 trials, the outcome variable (∆Tc/min) ranges 
in value from 0.03 to 0.24. Using G-SR, outcome variable 
delimiters of {0.06, 0.10, 0.14} are used to construct an 
ensemble of four Gaussian distributions each for Class 1 
(lower ∆Tc/min) and Class 2 (higher ∆Tc/min). The features, 
acceleration-based activity and GPS-based activity, are first z-
scored based on the training set. Feature regularization is done 
by adding σ2=100 to the diagonal elements of the G-SR 
covariance matrices. During testing, the G-SR Gaussian 
ensembles produce a LLR for each trial, which is mapped to 
the outcome variable (∆Tc/min) via a univariate linear 
regression model, which is constructed using least-squares 
fitting based on the training set LLRs. 

 
2) Predicting Tc from RR features 

 
Audio data is available from only 28 of the 36 trials. Our goal 
is to ascertain how well RR features obtained during the post-
activity recovery interval (e.g., rightmost interval of Figs. 5 
and 6) can predict the Tc values at the end of the skill tests 
(e.g., rightmost points in Fig. 4). Note that, in our current 
analysis, Tc measurements obtained during the skill tests only 
are used. In future work additional Tc measurements obtained 
from the VSP logger during recovery will be analyzed as well. 
For each trial, a statistical model is constructed from the other 
27 trials mapping the RR features into the final Tc value 
measured prior to the recovery interval. From all 28 trials, the 
outcome variable Tc ranges in value from 38.7 to 40.8 deg. 
Celsius. G-SR partitions the training data set based on 
outcome variable delimiters of [39.0:0.1:40.0], thereby 
constructing an ensemble of 11 Gaussian distributions each for 
Class 1 (lower Tc values) and Class 2 (higher Tc values).  
 

RR estimates over the recovery interval vary along two 
completely different dimensions: 1) the prevalence of RR 
values designated as being valid, and 2) the average value of 
the valid RR estimates. For example, in comparing the pre-
activity and post-activity intervals in Fig. 5, we can see time 
regions where the average values of valid RR estimates are 
similar, but where the prevalences of RR validity are very 
different. Therefore, it is necessary to capture both feature 
dimensions in order to disassociate high-frequency RRs 
obtained with low prevalence from those obtained with high 
prevalence. To capture both dimensions we construct RR 
features based on the fraction of valid RRs that are above a 
given threshold value. In order to also capture the 
distributional properties of valid RRs, we sweep over a range 
of thresholds spanning the breathing and panting frequencies, 
[1.125:0.125:5.875], and thereby produce a 39-dimensional 
vector of joint prevalence-frequency features. Fig. 7 plots the 
RR-based feature vectors obtained using this method from the 
recovery periods shown in Figs 5 and 6.   
 

 

 
Fig.7. RR-based feature vectors: Prevalence of valid RR estimates as a 
function of RR thresholds. Top: result for Aggression recovery interval (see 
Fig. 5), in which Tc = 39.7 deg. Bottom: result for Obedience recovery 
interval (see Fig. 6), in which Tc = 39.2. 
 
The RR-based features are z-scored based on the training set 
before being used by G-SR, and feature regularization is done 
by adding σ2=1 to the diagonal elements of the G-SR 
covariance matrices. Least squares linear univariate regression 
is used to map the LLRs to the outcome variable (Tc).   

IV. RESULTS 
1)  Predicting  ∆Tc/min from activity features 

 
The accelerometry- and GPS-based activity features are used 
to predict ∆Tc/min values from all 36 trials. This is done by 



applying G-SR within cross-validation, resulting in 
correlations between predicted and true ∆Tc values of r=0.54 
(p<0.001) for accelerometry-based activity estimates, r=0.35 
(p<0.05) for GPS-based activity estimates, and r=0.59 
(p<0.001) for combined activity estimates (i.e., combined 
using two-dimensional feature vectors). Fig. 8 shows a scatter 
plot of true versus predicted ∆Tc/min for the combined result, 
along with a linear regression fit. 
 

2) Predicting Tc from respiratory features 
 
The 39-dimensional RR-based feature vectors are used to 
predict Tc values prior to recovery from the 28 trials for which 
audio data is available. This is done by applying G-SR within 
cross-validation, resulting in correlation of r=0.49 (p<0.01) 
between predicted and actual Tc values (Fig. 9). 

 
Fig.8. Predicted ∆Tc/min from all 36 trials as a function of true ∆Tc/min, 
obtained using both accelerometry- and GPS-based activity estimates. 

 
Fig.9. Predicted Tc values from the 28 trials that contain audio as a function 
of true Tc. Predictions were obtained using the 39-dimensional RR-based 
feature vectors (see Fig. 7), 

V. CONCLUSION 
There is a vital need for real-time estimates of risks for 
thermal strain in MWDs, which could influence handlers’ 
decisions regarding work and rest cycles and improve health 
and safety outcomes for these valuable animals. This paper 
shows that it is possible to obtain useful estimates of activity 
levels and respiratory rates from collar-worn sensors. Using 
out-of-sample testing we showed that these estimates can 
inform predictions of change in Tc (from activity) and Tc 

levels (from RR). Moderately strong correlations between 
predicted and actual Tc values were obtained despite 
limitations due to the small size of the training set, the short 
durations of the MWD skill tests, and the large variety of 
behaviors comprising the skill tests. We plan to expand our 
analysis based on the entire set of MWD data already 
collected, as well as future planned collections. The new 
analysis, which will critically include Tc measurements during 
recovery, will hopefully lead to improvements in our ability 
for monitoring and forecasting the risk of heat strain in 
MWDs.   
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